History and Fundamentals of Oocyte Maturation in Vitro

H. I. Nielsen

Libya 2007

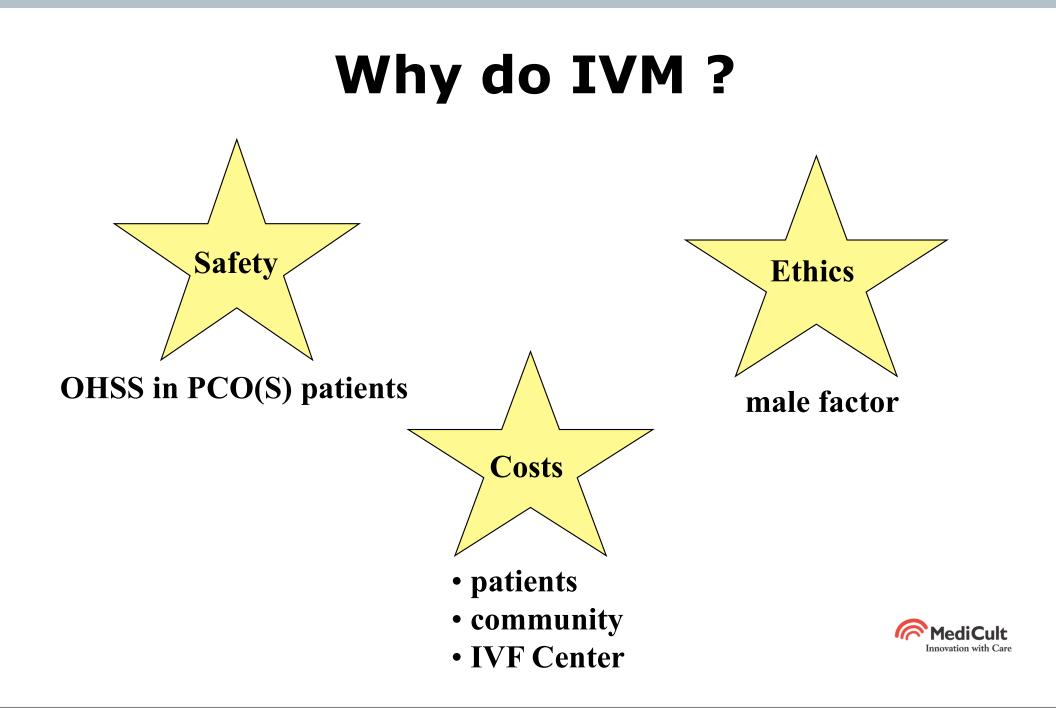
History of IVM

٢	1935	Pincus & Enzmann	IVM in rabbit
٢	1965	Edwards	IVM of human oocytes
٢	1983	Veeck	First IVM baby ('GV rescue')
3	1989	Cha et al.	First IVM babies (triplets) (unstimulated, donor)
٩	1993	Cha et al.	Further 4 IVM babies
٢	1994	Trounson et al.	First IVM baby from PCOS
٢	1995	Barnes et al.	PCOS
-			

- From 1996 Increasing number of groups worldwide
- End of 2006: Probably around 500 IVM babies worldwide

- so we thought!

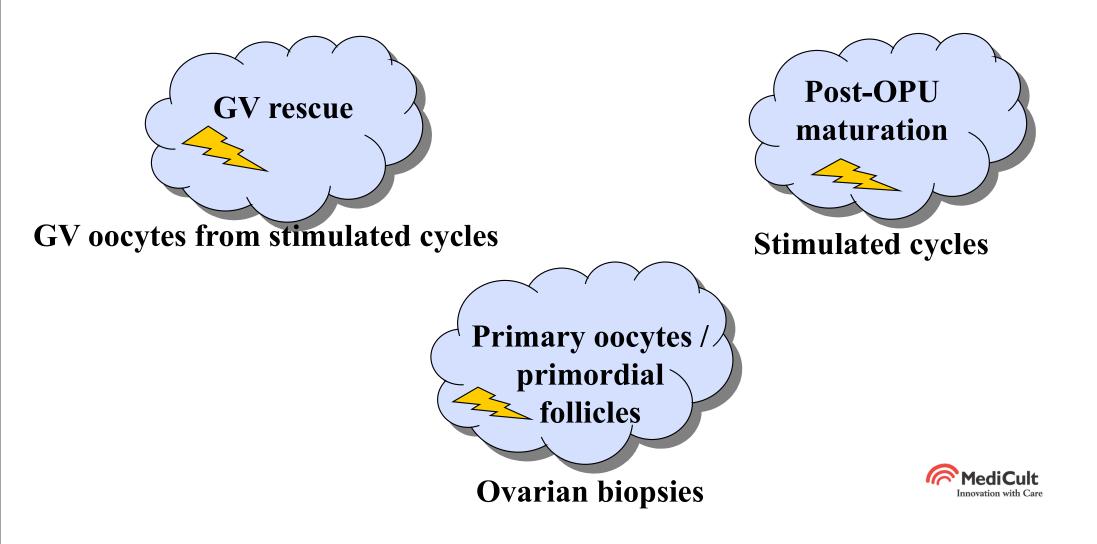
Countries	Deliveries and ongoing pregnancies
Scandinavia	150
Italy	77
France	40
Germany	20
Rest of Europe	33
Total Europe	320


Countries	Deliveries and ongoing pregnancies	
Middle East	21	
Japan	100	
Vietnam	26	
China (incl. HK)	60	
Korea (Cha Hosp.)	57	
Korea (Maria Cl.)	≈ 400	
Rest of Asia	15	
Total Asia	679 (Example 1)	diCult ion with Car

Countries	Deliveries and ongoing pregnancies
Canada	120
USA	5
Australia	5
Total	130

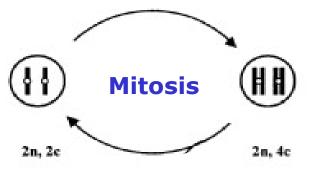
Countries	Deliveries and ongoing pregnancies
Asia	679
Europe	320
North America	125
Australia	5
Grand Total	1129

Why do IVM ?


- Poor (slow) responders
- Repeated poor embryo quality
- Repeated failure of ovulation induction

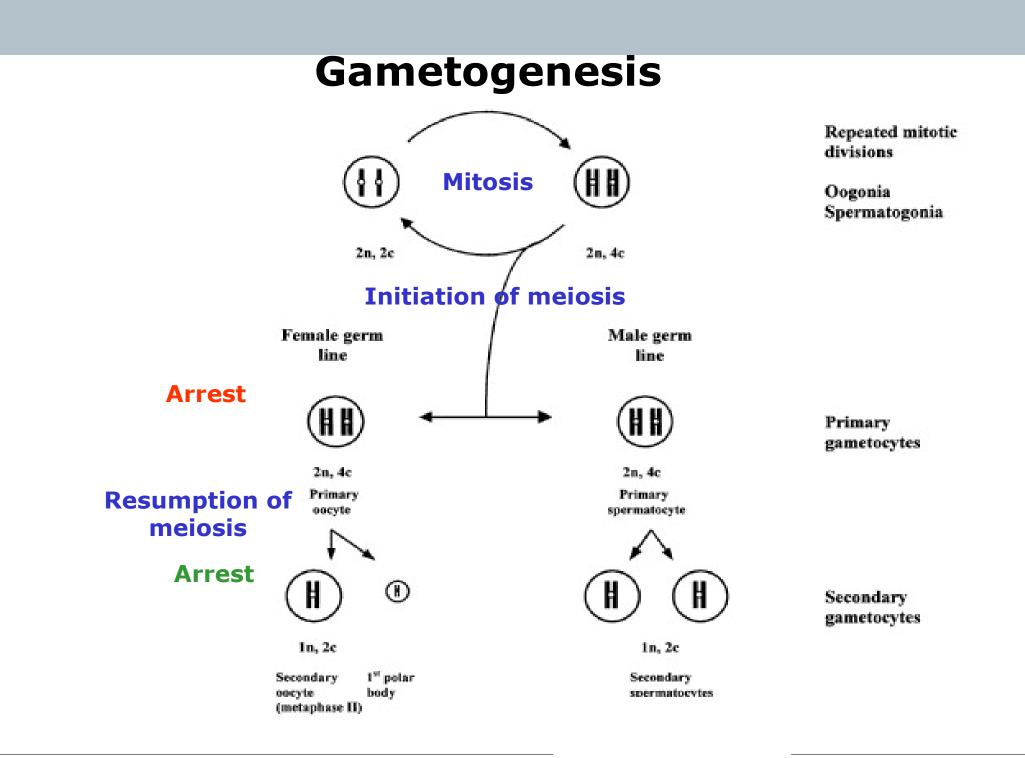
- Cryopreservation prior to cancer treatment
- Career and life style considerations

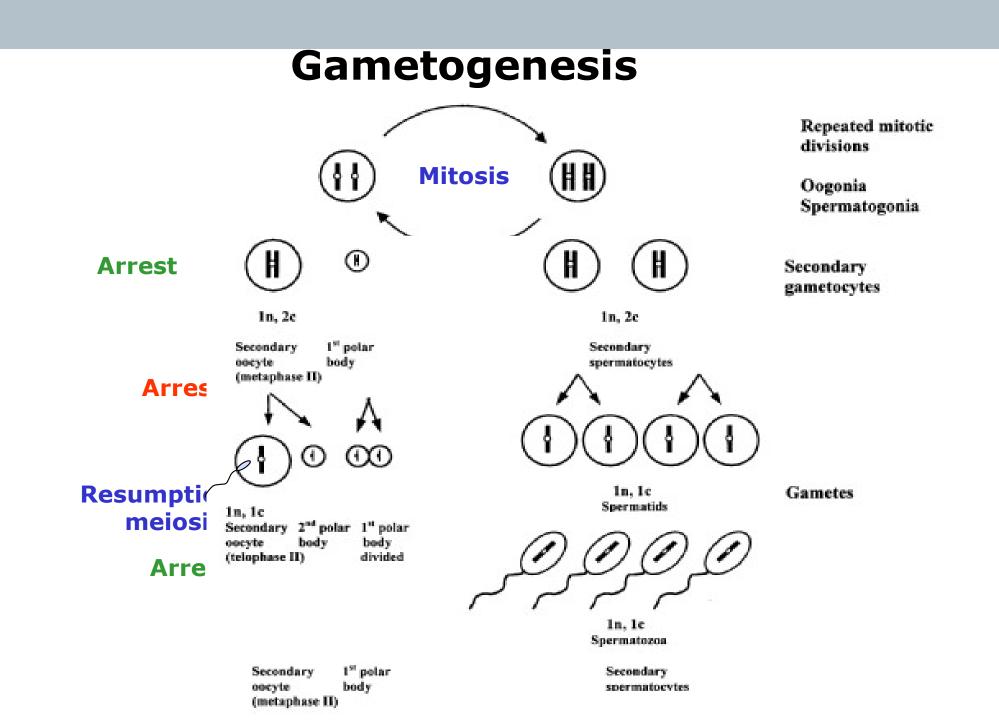
Why do IVM ? - future

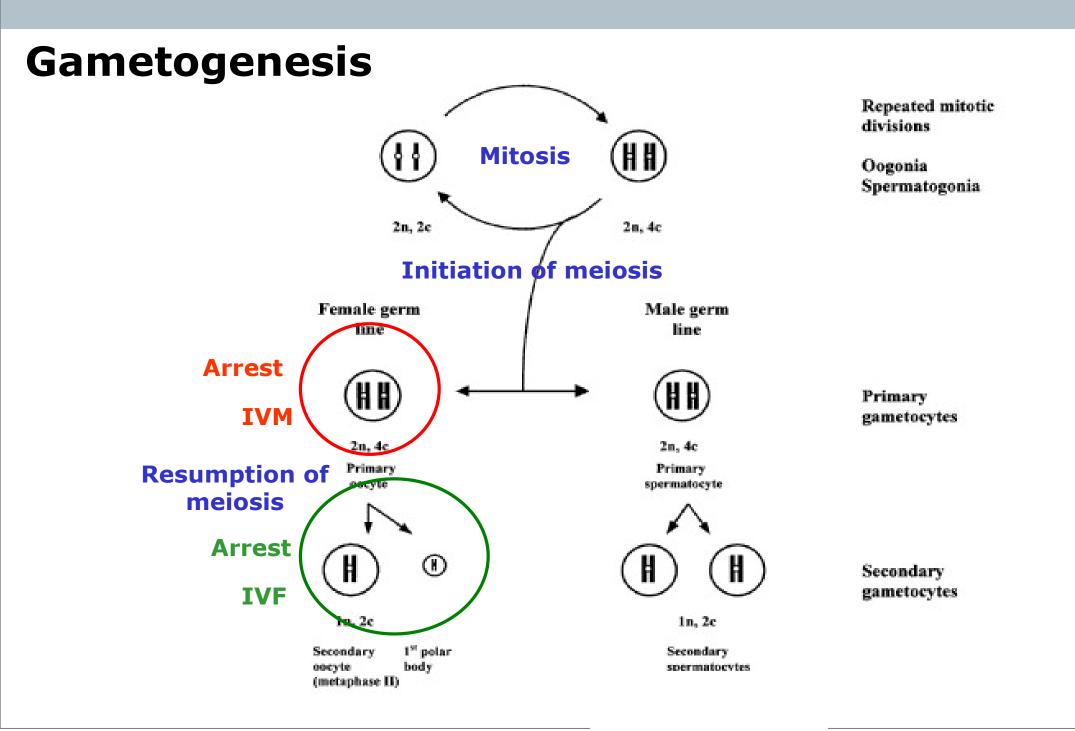


Scientific background for IVM

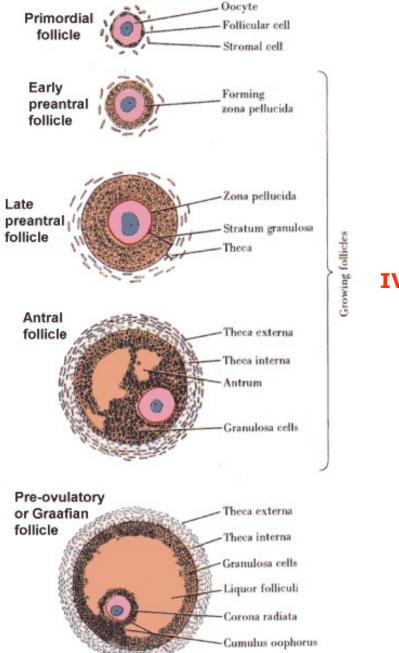
- Oogenesis
- Follicular development
- Follicular selection
- Follicular atresia


Gametogenesis

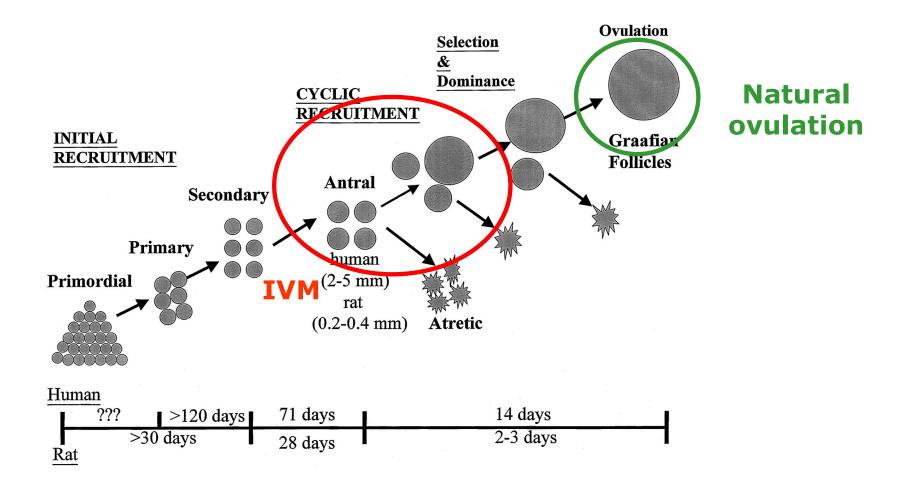



Repeated mitotic divisions

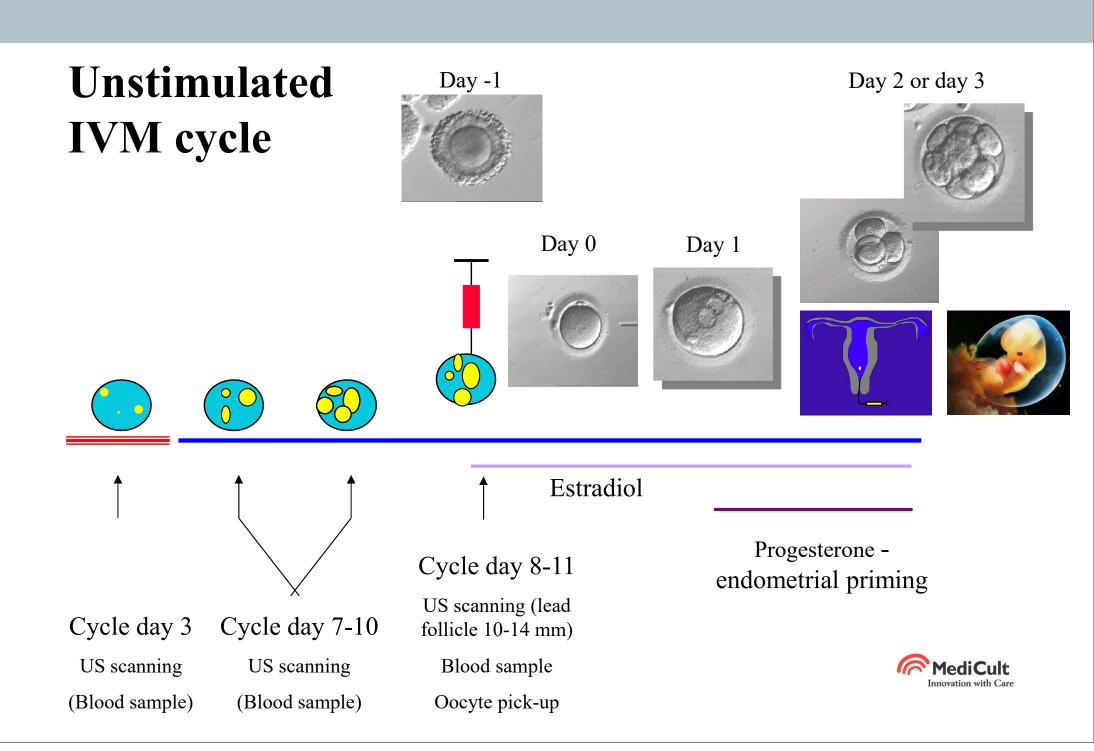
Oogonia Spermatogonia


Initiation of meiosis

Development of an Ovarian Follicle


IVM

Modified from Ross et al. Histology A Text and Atlas, 3rd Ed.


IVF

Follicle selection and atresia

Geneva Foundation for Medical Education and Research

Traditional IVF versus IVM

Traditional IVF

- Relatively many oocytes/embryos
- 'High' pregnancy rate / OPU
- Down regulation
- Daily hormone injections
- hCG injection
- Emotional stress
- Long treatment time 4-6 weeks
- Potential side effects (e.g. OHSS)

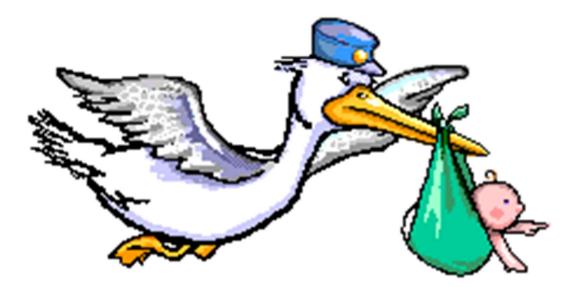
IVM®

- Fewer oocytes and embryos
- Lower pregnancy rate / OPU **BUT**
- No down regulation, no manipulation of hormone balance
- No hormone injections or
- Minimal hormone injections (PCOS)
- (No hCG injection)
- Reduced psychological impact
- Reduced treatment time 2 weeks
- Reduced interference with daily life
- No known side effects (e.g. OHSS)

First author and year published (reference citation no.)	No. of cycles	Priming	Average no. of occytes retrieved	% Maturation (duration of culture in h)	% Fertilization (type of Insemination)	% Cleaved embryos	Average no. of embryos transferred		IR (%)	No. of live births	% SAD
Cha 2000 (41)	94	None	13.0	62.2 (48)	es (ICSI)	68	4.9	27.1	0.0	20	20
Cha 2005 (51)	203	None	15.5	NA	NA	NA.	5.0	21.9	5.5	24	37
Chian 2000 (36)	13	hCG vs.	7.6	78.2/85.2 (24/48)	90.7 (ICSI)	94.9	2.8		10.0	3	40
	11	none	7.4	4.9"/08.0" (24/48)	63.9 (ICSI)	95.7	2.5	27.3	14.8	3	0
Child 2001 (36)	53 (PCO) VS.	hCG	10.0	76 (48)	70.3 (ICSI)	94.6	3.3	23.1	8.9		40
	66 (PCOS)	hCG	11.3	77 (48)	70.3 (ICSI)	91.3	32	29.0	0.0	10	52.3
Child 2002 (40)	107	hCG	10.3	70 (48)	78 (ICSI)	74	32	21.5	0.5	17	20.1
LeDu 2006 (10)	45	hcg	11.4	54.2/03 (24/48)	70.1 (ICSI)	90.3	2.5	22.5	10.0	0	40
Un 2008 (SP)	35	FSH + hCG vs.	21.9	43.2/70.5 (24/48)	76.8 (ICBI)	89.4	S.8	81.4	0.7	21	13
	33	hog	23.1	39.2/71.9 (24/48)	09.5 (ICSI)	68.1	3.8	35.4	11.3		
Mildkeisen 2001 (37)	12	None vs.	0.6	44 (24)	09 (ICSI)	04	1.7	0	0	0	0
	24	FSH	0.5	50 (24) ^a	70 (ICSI)	50	1.8	33*	21.0	3	62.5
Soderstrom-Anttila 2005 (12)	20 (PCO) vs.	None	9.3	54.9 (30 ⁻ 48)	35.0 (NF, 13) 72.4 (ICSI, 7)	85.7 01.9	1.7 2.0		13.3 0	2	0
	26 (PCOS)	None	14.8	58.2 (30-48)		82.5 70.9	1.7 1.8	52.0	34.5 12.5	0	33.3 60

TABLE 2

First author and year published (reference citation no.)	No. of cycles	Priming	Average no. of occytes retrieved	% Maturation (duration of culture in h)	% Fertilization (type of Insemination)	% Cleaved embryos	Average no. of embryos transferred	PR (%) per ET	IR (%)	No. of live births	%
Child 2001 (36)	50	hCS	6.1	78.4 (48)	72.5 (IC8I)	93.1	2.0	4	1.5	1	50
Mikkelsen 1999 (50)	10	None vs.	3.7	70 (30)	62 (ICSI)	54	1.6	33.3	18.8	- 4	20
	10	$FSH \times 3 d$	4	85 (30)	65 (ICSI)	62	1.9	22.2	11.6	1. 187	
	5	FSH × 3 d, vs.	4.2	71 (48j	61 (IC8I)	48	1.4	20	14.3	1	0
	7	FSH × up to ē d	2.4	71 (48)	61 (ICSI)	50	1.1	0	0		
Mikkelsen 2000 (48)	87	None	0.1	00 (28-30)	77 (IC8I)	87	2.0	17.4	8.6	•	18,9
Mikkelsen 2001 (49)	132	None	3.6	00 (28-30)	73 (ICSI)	87	NA.	18	NA.	12	20
Soderstrom-Anttila	91	None	0.3	00.9 (30-48)	35.0 (IVF) VS.	84.6	1.4	31	22.0	12	33.3
2005 (12)	100	None	0.5	54.5 (30-48)	67.1ª (ICSI)	85.8	1.5	21	20.0	15	10.7
Yoon 2001 (47)	63	None	0.0	40.7/71.5/74.3 (24/48/50)	72.0 (IVF and ICSI)	89	3.0	17.0	0.5	۰	33.3
Note: NA — not availab • Statistically significan Jeves is storestation of t	t differenc	ie cômpared w	c IR − Impla in the other	ntation rate; SAb - arm of that study.		nion. Average	2.0	20			


What needs to be improved in IVM?

- IVM has a lower pregnancy rate per OPU due to lower no. of oocytes/embryos resulting in lower transfer rate
- IVM has a lower pregnancy rate per ET due to lower no. of embryos resulting in lack of selection possibilities, and possibly in a smaller no. of embryos transferred
- IVM has a lower implantation rate due to lower no. of embryos resulting in lack of selection possibilities
- IVM has probably a higher rate of early pregnancy loss?

Shukran

